Structural and surface engineering promotes Zn-ion energy storage capability of commercial carbon cloth

Author:

Liu Qiyu12,Xu Wei3,Zheng Dezhou3ORCID,Wang Fuxin3,Wang Yi1,Lu Xihong2ORCID

Affiliation:

1. College of Chemistry and Material Engineering, Guiyang University 1 , Guiyang 550005, People’s Republic of China

2. The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University 2 , Guangzhou 510275, People’s Republic of China

3. School of Applied Physics and Materials, Wuyi University 3 , Jiangmen 529020, People’s Republic of China

Abstract

Aqueous Zn-ion hybrid supercapacitors (AZHSCs) combining the advantages of high-energy batteries and high-power supercapacitors see a bright future, but they still suffer from the poor capacity of carbonic cathodes. Herein, a functionalized porous carbon cloth (denoted as FPCC) electrode is demonstrated based on commercial carbon cloth (denoted as CC) tuning by structural and surface engineering. The constructed exfoliated porous carbon layer and the negatively charged functionalized interface not only increase the electrical double layer capacitance but also favor the chemical adsorption of Zn2+ to obtain additional pseudocapacitance. Consequently, the FPCC electrode delivers a high capacity of 0.16 mAh cm−2 at 4 mA cm−2, which is 923.8 times higher than CC, and a long cycle life (85.0% capacity retention after 30 000 cycles). More importantly, the Zn//FPCC AZHSC possesses an impressive energy density (3.3 mWh cm−3) and power density (240 mW cm−3), superior to many advanced batteries and supercapacitors. The quasi-solid-state device is also assembled as a demo. This modification strategy may provide new opportunities for high-performance AZHSCs.

Funder

National Natural Science Foundation of China

Guangdong Province Innovation and Strong School Project

The Central Government Guides Local Science and Technology Development Funds

Project of Guizhou Provincial Department of Education

Guizhou Provincial Department of Science and Technology for academic seedling cultivation and free exploration

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3