Deterministic topological defects and quantum dot assembly in a nematic liquid crystalline medium

Author:

Qaiser Maryam1,Bano Afsar1,Shaukat Ammad2,Hussain Syed Zajif3,Ulhaq Ata1ORCID,Khan Ammar A.1ORCID

Affiliation:

1. Department of Physics, SBA School of Science and Engineering, Lahore University of Management Sciences, LUMS, Sector U, 54792, DHA Lahore, Lahore, Punjab, Pakistan

2. Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, LUMS, Sector U, 54792, DHA Lahore, Lahore, Punjab, Pakistan

3. Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences, LUMS, Sector U, 54792, DHA Lahore, Lahore, Punjab, Pakistan

Abstract

Liquid crystal (LC) materials exhibit interesting electro-optic switching and molecular ordering properties. Furthermore, the addition of chemically compatible active emitters such as core-shell quantum dots (QD) in a LC medium allows optical as well as dielectric tuning in an anisotropic, reconfigurable ordered medium. Order in a nematic LC phase is characterized by an orientational order parameter. In this work, we demonstrate the use of patterned substrates to generate arrays of integer topological defects in a nematic LC medium doped with cadmium selenide (core) cadmium sulfide (shell) core–shell QDs. We demonstrate the formation of metastable air-pillar-induced integer topological defects (TDs) in relatively thinner 9  μm LC sandwich cells, and the formation of field-induced TDs in thicker (25  μm) cells. Simultaneously, the self-assembly of core-shell QDs into square arrays on the patterned substrates is discussed, highlighting potential electro-optic device applications. The surfactant hexadecyltrimethylammonium bromide (CTAB) is found to play a significant role in LC TD formation as well as QD spatial organization at the optimized concentration. Self-assembly and ordering of single- and multi-component LCs within structured devices is a highly relevant problem for modern optoelectronic devices. This work opens new possibilities for classical as well as quantum light sources which require spatially ordered optical emitters in a reconfigurable dielectric medium at a micron-scale.

Funder

Higher Education Commision, Pakistan

Lahore University of Management Sciences

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3