Characterizing the effects of drive asymmetries, component offsets, and joint gaps in double shell capsule implosions

Author:

Goodarzi S.1ORCID,Sagert I.1ORCID,Sauppe J. P.1ORCID,Keiter P. A.1ORCID,Loomis E. N.1ORCID,Sacks R. F.1ORCID,Mohamed Z. L.1ORCID,Palaniyappan S.1ORCID,Merritt E. C.1ORCID,Haines B. M.1ORCID,Patterson B. M.1ORCID,Meyerhofer D. D.1ORCID,Montgomery D. S.1ORCID,Schmidt D. W.1ORCID

Affiliation:

1. Los Alamos National Laboratory , Los Alamos, New Mexico 87545, USA

Abstract

This work provides a numerical study of how double shell capsule deformations caused by drive asymmetries and fabrication imperfections affect implosion symmetry and neutron yield. Hydrodynamics simulations are performed in two dimensions and focus on low-mode deformations that are caused by corresponding asymmetries in the Hohlraum drive, component offsets, and ablator joint gaps. By providing a parameter study of these features, our goal is to understand the dominant sources for inner shell deformation and yield degradation. The discussed capsules are composed of an aluminum ablator with a chromium inner shell. The latter encloses a carbon-deuterium foam ball that serves as fuel. We find that for clean capsules, even-numbered low-mode asymmetries in the drive are imprinted on the ablator and smoothly transferred to the inner shell during shell collision. The resulting deformation of the inner shell is more pronounced with larger fuel radius, while the yield is inversely proportional to the amplitude of the drive asymmetry and varies by factors ≤4 in comparison with clean simulations. Capsule component offsets in the vertical direction and ablator thickness nonuniformity result in p1-type deformations of the imploding inner shell. Finally, joint gaps have the largest effect in deforming the ablator and inner shell and degrading yield. While small gap widths (1 μm) result in prolate inner shells, larger gap widths (4 μm) cause an oblate deformation. More importantly, capsules with a small outer gap (1 μm) experience a dramatic drop in yield, typically <3% of a clean simulation.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3