Global rotation of skyrmion bags under vertical microwave fields

Author:

Bo Lan12ORCID,Zhao Rongzhi3ORCID,Zhang Xichao1ORCID,Mochizuki Masahito1ORCID,Zhang Xuefeng23ORCID

Affiliation:

1. Department of Applied Physics, Waseda University 1 , Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

2. Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University 2 , Shenyang 110819, China

3. Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University 3 , Hangzhou 310012, China

Abstract

Magnetic skyrmion bags are composite topological spin textures with arbitrary topological charges. Here, we computationally study the transient rotational motion of skyrmion bags, which is characterized by a global rotation of inner skyrmions around the central point. Distinct from conventional rotational modes found in skyrmions, the observed rotation is a forced motion associated with the breathing mode induced solely by vertical microwave fields. The driving force behind this rotation originates from the interactions between outer and inner skyrmions, with the angular velocity determined by the phase difference resulting from their asynchronous breathing behaviors. It is also found that skyrmion bags with larger skyrmion numbers are more conducive to the occurrence of the rotation. Our results are useful for understanding the cluster dynamics of complex topological spin textures driven by dynamic fields.

Funder

JST CREST

JSPS KAKENHI

Waseda University Grant for Special Re

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

China Scholarship Council

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3