Assessing the effects of pressure variations on combustion dynamics in vortex-tube flows

Author:

Ren Shoujun1ORCID,Tian Bo2ORCID,Jones William P.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Imperial College London 1 , Exhibition Road, London SW7 2AZ, United Kingdom

2. Department of Engineering, University of Leicester 2 , University Road, Leicester LE1 7RH, United Kingdom

Abstract

In our investigation, we scrutinize combustion stability in vortex-tube combustion at high operating pressures by examining stability limits, flame configurations, and pressure oscillations. Our examination deeply probes the intricacies of flow and flame behaviors in terms of aerodynamic, thermodynamic, and flamedynamic aspects to identify the fundamental reasons behind stability variances at different pressure levels. The findings indicate that combustion instability escalates with rising operating pressures, marked by increased variability in flame patterns and a monotonic upsurge in pressure oscillation amplitudes. Although aerodynamic and thermodynamic stabilities remain unaffected, the thermoacoustic stability is compromised at elevated pressures. This is evidenced by the strong link between the Rayleigh criterion and the amplitude of pressure fluctuations, with an increased “gain” in the flame transfer function as pressure mounts. The core of the observed thermoacoustic instability is traced back to heightened density variations and mean flow velocities at high pressures, leading to amplified momentum flux oscillations.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3