Study on the mechanism and load characteristics of secondary cavitation near free surface in underwater explosion

Author:

Yu Jun12ORCID,Wu Wen-Wei12,Yan Bo1,Dong Jiu-Ting1,Zhang Xian-Pi1

Affiliation:

1. China Ship Scientific Research Center, Wuxi 214082, China

2. Taihu Laboratory of Deep-sea Technological Science, Wuxi 214082, China

Abstract

Although the cavitation phenomenon in underwater explosion has been researched for more than 100 years, the phase transition models based on mass and heat exchange between liquid and its vapor phases have only been established in the past decade. In this study, the secondary cavitation phenomenon was first captured by phase transition based on a four-equation system. The bulk cavitation near the free surface induced by underwater explosion was numerically investigated, and three typical bulk cavitation cases were investigated to explore their motion mechanisms and load characteristics on hydrodynamics and phase transition generation. It was found that secondary bulk cavitation will occur only under the condition that both the initial shock wave intensity and the distance between the water surface and the explosion bubble are satisfied in a specific relationship. Producing bulk cavitation was difficult at a relatively deep detonation depth because of the weak rarefaction wave reflected from the water surface by smaller charges. The statistical data under the condition of small charge indicated that the duration of cavitation increases with the increase in charge weight but the growth trend slows down gradually. However, the maximum volume of cavitation increased linearly with an increase in the charge weight. The present results can expand the currently limited database of underwater explosion multiphase fluids and provide insight into the interactions between the shock wave, bulk cavitation, explosion bubble, and water surface.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference33 articles.

1. R. H. Cole, Underwater Explosion (Princeton University Press, NJ, 1948), pp. 3–8.

2. J. H. Liu, “Theory and its applications of ship dynamic responses to non-contact underwater explosions,” Ph.D. thesis, CSSRC, Wuxi, China, 2002, pp. 5–8.

3. J. J. Esplin, “Bulk cavitation extent modeling: An energy-based approach,” Ph.D. thesis (The Pennsylvania State University, 2016), pp. 1–8.

4. An effective method for modeling the load of bubble jet in underwater explosion near the wall

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3