Crack-path bifurcation, arrest, and renucleation in porous 3C-SiC

Author:

Elahi Fazle1ORCID,Hossain Zubaer M.1ORCID

Affiliation:

1. Laboratory of Mechanics and Physics of Heterogeneous Materials, Center for Composite Materials, Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, USA

Abstract

This paper presents the physics of crack-path formation in single-crystalline [Formula: see text]-SiC containing an isolated pore as a combination of three physical processes: bifurcation, arrest, and renucleation. Results show that, depending on the symmetry of the crystal structure, three distinctive crack paths form: (i) crack bifurcates and propagates in the domain without being affected by the pore, (ii) crack bifurcates and interacts strongly with the pore leading to a termination of the propagating crack, and (iii) crack does not bifurcate, retains its propagation path on the symmetry plane, and gets arrested at the pore. The continued growth of the terminated crack requires crack renucleation at the pore edge, and the renucleation event enhances the effective toughness of the domain. The degree of toughness enhancement depends on the pore diameter, the crack length, and the crack–pore distance. While the crystallographic anisotropy forms the basis for bifurcation, the conditions for bifurcation and arrest are governed by the strength of elastic interactions emanating from the crack tip and the pore edge. As such, there exists a critical crack–pore distance of 40 nm below which the crack–porosity interaction is strong enough to enforce the bifurcated crack to divert toward the pore, leading to instant termination of its growth.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3