Prediction of four Si3N4 compounds by first-principles calculations

Author:

Wu Qiaohe1ORCID,Huo Zhongtang2,Chen Chong1,Li Xiuqing1,Wang Zhou1,Wang Changji1,Zhang Lianjie1,Gao Yufei3ORCID,Xiong Mei1ORCID,Pan Kunming1

Affiliation:

1. National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology 1 , Luoyang 471003, China

2. Mechanical and Electrical College, Handan College 2 , Handan 056001, China

3. Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University 3 , Qinhuangdao 066004, China

Abstract

Four Si3N4 crystal structures were predicted using an ab initio evolutionary methodology. The mechanical and dynamic stabilities were confirmed by the density functional theory assuming zero-pressure conditions. Energetic stability calculations indicated that the structures are metastable phases at ambient pressure, but their formation is more favorable at high pressures. At zero pressure, the densities of the hp-Si3N4, cp-Si3N4, oc-Si3N4, and ti-Si3N4 phases were 3.21, 3.28, 3.70, and 3.24 g/cm3, respectively. The calculated band structures and densities of states indicated that they have semiconductive properties, with gaps ranging from 0.754 to 3.968 eV. Mechanical property calculations revealed that the hardness of the Si3N4 compounds ranged between 11.2 and 23.3 GPa, which were higher than the corresponding values for the synthesized Si3N4 phases. These four Si3N4 structures are potentially valuable candidates for the synthesis of Si3N4 compounds.

Funder

National Science Foundation of China

Key Scientific and Technological Project of Henan Province

Science and Technology Project of Hebei Education Department

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3