Affiliation:
1. Department of Physics, University of Alabama at Birmingham 1 , 1720 2nd Ave S., ESH 4100, Birmingham, Alabama 35294, USA
2. Intel Corporation 2 , 2501 NE Century Blvd., Hillsboro, Oregon 97124, USA
Abstract
Ultrawide bandgap semiconductors (UWBGs) provide great promise for optical devices operating in the near to deep ultraviolet, and recently they have become a viable semiconducting material for high power electronics. From the power grid to electronic vehicles, the intention is to replace massively awkward components with the convenience of a solid state electronic “chip.” Unfortunately, the challenges faced by wide bandgap electronic materials, such as GaN and SiC, increase as the bandgap increases. A point defect, for example, can take on more charge states and energy configurations. This perspective describes a method to investigate the many charge states and their associated transitions—photo-induced electron paramagnetic resonance (photo-EPR) spectroscopy. Although not new to the study of defects in semiconductors, photo-EPR studies can probe the entire ultrawide bandgap given the appropriate light source for excitation. Examples provided here cover specific defects in UWBGs, AlN, and Ga2O3. The discussion also reminds us how the rapid pace of discovery surrounding this newest class of semiconductors is due, in part, to fundamental research studies of the past, some as far back as a century ago and some based on very different materials systems.
Funder
National Science Foundation
DOE Office of Basic Energy Science EFRC