Quantized vortex nucleation in collisions of superfluid nanoscopic helium droplets at zero temperature

Author:

García-Alfonso Ernesto1ORCID,Ancilotto Francesco23ORCID,Barranco Manuel45ORCID,Pi Martí45ORCID,Halberstadt Nadine1ORCID

Affiliation:

1. Laboratoire Collisions, Agrégats, Réactivité (LCAR), Université de Toulouse, CNRS 1 , 31062 Toulouse, France

2. Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Università di Padova 2 , Via Marzolo 8, 35122 Padova, Italy

3. CNR-IOM Democritos 3 , Via Bonomea, 265 - 34136 Trieste, Italy

4. Departament FQA, Facultat de Física, Universitat de Barcelona 4 , Av. Diagonal 645, 08028 Barcelona, Spain

5. Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona 5 , Barcelona, Spain

Abstract

We address the collision of two superfluid 4He droplets at non-zero initial relative velocities and impact parameters within the framework of liquid 4He time-dependent density functional theory at zero temperature. Despite the small size of these droplets (1000 He atoms in the merged droplet) imposed by computational limitations, we have found that quantized vortices may be readily nucleated for reasonable collision parameters. At variance with head-on collisions, where only vortex rings are produced, collisions with a non-zero impact parameter produce linear vortices that are nucleated at indentations appearing on the surface of the deformed merged droplet. Whereas for equal-size droplets, vortices are produced in pairs, an odd number of vortices can appear when the colliding droplet sizes are different. In all cases, vortices coexist with surface capillary waves. The possibility for collisions to be at the origin of vortex nucleation in experiments involving very large droplets is discussed. An additional surprising result is the observation of the drops coalescence even for grazing and distal collisions at relative velocities as high as 80 and 40 m/s, respectively, induced by the long-range van der Waals attraction between the droplets.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3