Computational evolution of high-performing unfused non-fullerene acceptors for organic solar cells

Author:

Greenstein Brianna L.1ORCID,Hiener Danielle C.1ORCID,Hutchison Geoffrey R.1ORCID

Affiliation:

1. Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA

Abstract

Materials optimization for organic solar cells (OSCs) is a highly active field, with many approaches using empirical experimental synthesis, computational brute force to screen a subset of chemical space, or generative machine learning methods that often require significant training sets. While these methods may find high-performing materials, they can be inefficient and time-consuming. Genetic algorithms (GAs) are an alternative approach, allowing for the “virtual synthesis” of molecules and a prediction of their “fitness” for some property, with new candidates suggested based on good characteristics of previously generated molecules. In this work, a GA is used to discover high-performing unfused non-fullerene acceptors (NFAs) based on an empirical prediction of power conversion efficiency (PCE) and provides design rules for future work. The electron-withdrawing/donating strength, as well as the sequence and symmetry, of those units are examined. The utilization of a GA over a brute-force approach resulted in speedups up to 1.8 × 1012. New types of units, not frequently seen in OSCs, are suggested, and in total 5426 NFAs are discovered with the GA. Of these, 1087 NFAs are predicted to have a PCE greater than 18%, which is roughly the current record efficiency. While the symmetry of the sequence showed no correlation with PCE, analysis of the sequence arrangement revealed that higher performance can be achieved with a donor core and acceptor end groups. Future NFA designs should consider this strategy as an alternative to the current A-D-A′-D-A architecture.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3