Spatiotemporal dynamics of biocrust and vegetation on sand dunes

Author:

Yizhaq H.1ORCID,Ashkenazy Y.1ORCID

Affiliation:

1. Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University, Midreshet Ben-Gurion 8499000, Israel

Abstract

We propose a model to study at the first time the spatiotemporal dynamics of the coupling between biocrust and vegetation cover on sand dunes; previous studies modeled the temporal dynamics of vegetation-biocrust-sand system while other focused only on the spatiotemporal dynamics of vegetation on sand dunes, excluding the effect of biocrust. The model consists of two coupled partial nonlinear differential equations and includes diffusion and advection terms for modeling the dispersal of vegetation and biocrust and the effect of wind on them. In the absence of spatial variability, the model exhibits self-sustained relaxation oscillations and regimes of bistability–the first state is dominated by biocrust and the second by vegetation. We concentrate on the one-dimensional dynamics of the model and show that the front that connects these two states propagates mainly due to the wind advection. In the oscillatory regime the front propagation is complex and very interesting compared to the non-spatial relaxation oscillations. For low wind DP (drift potential) values, a series of spatially oscillatory domains develops as the front advances downwind. These domains form due to the oscillations of the spatially homogeneous states away from the front. However, for higher DP values, the dynamics is much more complex, becoming very sensitive to the initial conditions and exhibiting an irregular spatial pattern as small domains are created and annihilated during the front advance. The irregular spatiotemporal dynamics reported here seems to be unique, at least in the context of vegetation dynamics and possibly also in context of other dynamical systems.

Funder

Israel Science Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3