Solution structures and ultrafast vibrational energy dissipation dynamics in cyclotetramethylene tetranitramine

Author:

Yang Fan1,Shi Lu12,Dong Tiantian12,Yu Pengyun12,Hu Rong12,Wu Honglin3,Yang Yanqiang3ORCID,Wang Jianping12ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

2. University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

3. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China

Abstract

Steady-state and time-resolved infrared (IR) studies of cyclotetramethylene tetranitramine (HMX) were carried out, using the asymmetric nitro-stretch as probe, to investigate its solution structures and vibrational energy transfer processes in pure dimethyl sulfoxide (DMSO) and in a DMSO/water mixture. A linear IR spectrum in the nitro-stretching mode region shows two major bands and one minor band in DMSO but changes to the two major bands mainly picture when adding water as an antisolvent of HMX, suggesting a transition from well-solvated and less perfect β-conformation to a less-solvated and close-to-perfect β-conformation. The latter bears a similar asymmetric nitro-stretch vibration profile to the β-polymorph in the crystal form. Density functional theory computations of the nitro-stretching vibrations suggest that HMX in DMSO may be in a NO2 group rotated β-conformation. Two-dimensional IR cross-peak intensity reveals intramolecular energy transfer between the axial and equatorial nitro-groups in the β-HMX on the ps time scale, which is slightly faster in the mixed solvent case. The importance of water as an antisolvent in influencing the equilibrium solvation structure, as well as the vibrational and orientational relaxation dynamics of HMX, is discussed.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue on time-resolved vibrational spectroscopy;The Journal of Chemical Physics;2023-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3