Theoretical and experimental investigation on the low-frequency vibro-acoustic characteristics of a finite locally resonant plate

Author:

Guo Peng1,Zhou Qi-zheng1ORCID,Luo Zi-yin1

Affiliation:

1. College of Weaponry Engineering, Naval University of Engineering, Wuhan, Hubei 430033, China

Abstract

This study investigates the low-frequency vibro-acoustic characteristics of a finite locally resonant (LR) plate. A dynamic model of the finite LR plate consisting of periodic arrays of beam-like resonators attached to a thin aluminum plate with simply supported boundary conditions is established, and the average vibration response and radiated efficiency are theoretically determined by using modal-superposition and harmonic-balance methods. In addition, the study investigates the influence of the parameters and number of additional resonators on the vibro-acoustic performance of the finite LR plate. Finally, a vibration experiment of a finite plate with 8 × 10 uniformly distributed beam-like resonators validates the theoretical analysis results. The numerical and experimental results show that the finite LR plate has a low-frequency bandgap that can suppress the vibration and radiated noise of the structure, and the bandgap position is close to the resonance frequency of resonators. The position and performance of bandgaps can be influenced by changing the parameters and number of resonators. The experimental results show a bandgap ranging from 370 to 425 Hz, which is consistent with the theoretical prediction. The finite LR plates proposed in this study can find potential applications in the attenuation of low-frequency vibration and noise.

Funder

the National Nature Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3