Computational study of the effect of grain boundary and nano-porosity on xenon behavior in UO2

Author:

Zamzamian Seyed Mehrdad1ORCID,Kowsar Zahra1,Zolfaghari Ahmadreza1

Affiliation:

1. Engineering Department, Shahid Beheshti of University, P.O. Box 1983969411, Tehran, Iran

Abstract

Since xenon (Xe) production is always an unavoidable part of the fission products in fuel pellets, the challenges of its presence have always been the subject of many papers. In line with these goals, in the present paper, the effect of the presence of grain boundaries (GBs) with misorientations ([Formula: see text]) of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] in 10%Xe-UO2 (uranium dioxide in which 10% of its uranium atoms have been replaced by xenon atoms) on the behavior of xenon (diffusion, nucleation, and formation of clusters) was investigated by performing molecular dynamics (MD) simulations. The results showed that xenon atoms aggregate in the GB with misorientations of [Formula: see text] and [Formula: see text] and form larger clusters relative to other GBs. This was interpreted due to the low formation energy of these two GBs in comparison with other misorientations. A decrease in the number of xenon atoms was also observed at a slight distance from these two GB regions, indicating their sink efficiency. The calculation of diffusion coefficients also indicated that the presence of these two GBs increases the coefficients (xenon, oxygen, and uranium). All of these demonstrate the effective role of [Formula: see text] and [Formula: see text] in swelling. To reduce the destructive effect of xenon atoms on the fuel pellet, a conceptual design in the form of nanoporous was proposed. The results of the MD simulation of such a design showed that the presence of nano-porosity significantly reduces xenon clusters.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3