Leveraging uncertainty estimates and derivative information in Gaussian process regression for efficient collection and use of molecular simulation data

Author:

Monroe Jacob I.1ORCID,Krekelberg William P.1ORCID,McDannald Austin2ORCID,Shen Vincent K.1

Affiliation:

1. Chemical Sciences Division, National Institute of Standards and Technology 1 , Gaithersburg, Maryland 20899-8320, USA

2. Material Measurement Science Division, National Institute of Standards and Technology 2 , Gaithersburg, Maryland 20899-8320, USA

Abstract

We introduce Gaussian Process Regression (GPR) as an enhanced method of thermodynamic extrapolation and interpolation. The heteroscedastic GPR models that we introduce automatically weight provided information by its estimated uncertainty, allowing for the incorporation of highly uncertain, high-order derivative information. By the linearity of the derivative operator, GPR models naturally handle derivative information and, with appropriate likelihood models that incorporate heterogeneous uncertainties, are able to identify estimates of functions for which the provided observations and derivatives are inconsistent due to the sampling bias that is common in molecular simulations. Since we utilize kernels that form complete bases on the function space to be learned, the estimated uncertainty in the model takes into account that of the functional form itself, in contrast to polynomial interpolation, which explicitly assumes the functional form to be fixed. We apply GPR models to a variety of data sources and assess various active learning strategies, identifying when specific options will be most useful. Our active-learning data collection based on GPR models incorporating derivative information is finally applied to tracing vapor–liquid equilibrium for a single-component Lennard-Jones fluid, which we show represents a powerful generalization to previous extrapolation strategies and Gibbs–Duhem integration. A suite of tools implementing these methods is provided at https://github.com/usnistgov/thermo-extrap.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3