Affiliation:
1. School of Physics and Electronics, Central South University , Changsha 410083, China
Abstract
A hybrid structure composed of a grating coupled graphene structure and two one-dimensional photonic crystals (PhCs) is investigated, where the topological edge state (TES) and the graphene surface plasmon polariton (GSPP) are coupled to generate Fano resonances. The grating coupled graphene structure is used to excite the GSPP and provides a broad resonance. The two PhCs are designed to possess opposite topological properties; thus, the TES appears at the interface and exhibits a narrow resonance. The constructive and destructive interference between the GSPP and the TES results in the Fano resonance. By analyzing the resonant behaviors, it is found that the line shape of Fano resonance can be actively tuned by the graphene Fermi energy. We apply our results to the optical switching, a high-performance optical switch is achieved, and the modulation depth can reach as high as 23.31 dB. In addition, owing to the characteristic of Fano resonance with steep dispersion and asymmetric profile, our designs might offer an alternative strategy to achieve potential applications in sensors, filters, optical switches, and slow-light devices.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for Central Universities of the Central South University
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献