Experimental observation on the end-gas autoignition and detonation affected by chemical reactivity in confined space

Author:

Zhong Lijia1,Zhou Lei1ORCID,Liu Peilin1,Zhang Xiaojun1ORCID,Li Kuangdi1,Chen Rui12ORCID,Wei Haiqiao1ORCID

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

2. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom

Abstract

The deflagration-to-detonation transition remains one of the most interesting and mysterious physical phenomena in the combustion of energetic materials, which contains substantial complicated and nonlinear characteristics. In the present work, the effect of the chemical reactivity of different fuels and diluent gases on the end-gas autoignition and detonation development in a confined space was investigated. Five fuels (hydrogen, methane, iso-octane, n-heptane, and PRF50) and three diluent gases (argon, nitrogen, and carbon dioxide) were used to change the chemical reactivity. The results showed that both the chemical reactivity and shock wave had a significant influence on the end-gas autoignition and detonation development. For mixtures with different diluent gases, it was observed that the transition thresholds (denoted by critical oxygen fraction) increased in the order of argon, nitrogen, and carbon dioxide. Different detonation modes with varying shock compressions were observed under different diluents for n-heptane. Although the flame propagation of different fuels differs at 21% oxygen fraction, end-gas autoignition and detonation development processes can still be observed in all kinds of fuels when the oxygen fraction was elevated to a certain value. The transition thresholds increased in the order of hydrogen, n-heptane, PRF50, iso-octane, and methane. Further analysis revealed that the fuel with a shorter ignition delay usually required a lower flame tip velocity, accomplished with a delayed occurrence of detonation. In addition, the transition threshold was determined by the chemical reactivity and flame speed.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3