Quantum and classical dynamical semigroups of superchannels and semicausal channels

Author:

Hasenöhrl Markus1ORCID,Caro Matthias C.1ORCID

Affiliation:

1. Department of Mathematics, Technical University of Munich, Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Munich, Germany

Abstract

Quantum devices are subject to natural decay. We propose to study these decay processes as the Markovian evolution of quantum channels, which leads us to dynamical semigroups of superchannels. A superchannel is a linear map that maps quantum channels to quantum channels while satisfying suitable consistency relations. If the input and output quantum channels act on the same space, then we can consider dynamical semigroups of superchannels. No useful constructive characterization of the generators of such semigroups is known. We characterize these generators in two ways: First, we give an efficiently checkable criterion for whether a given map generates a dynamical semigroup of superchannels. Second, we identify a normal form for the generators of semigroups of quantum superchannels, analogous to the Gorini-Kossakowski-Lindblad-Sudarshan form in the case of quantum channels. To derive the normal form, we exploit the relation between superchannels and semicausal completely positive maps, reducing the problem to finding a normal form for the generators of semigroups of semicausal completely positive maps. We derive a normal for these generators using a novel technique, which applies also to infinite-dimensional systems. Our work paves the way for a thorough investigation of semigroups of superchannels: Numerical studies become feasible because admissible generators can now be explicitly generated and checked. Analytic properties of the corresponding evolution equations are now accessible via our normal form.

Funder

Elitenetzwerk Bayern

Studienstiftung des Deutschen Volkes

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3