Enhancement of microwave fields in pulse EPR of quantum paraelectrics

Author:

Laguta V.1ORCID,Bovtun V.1ORCID,Kempa M.1ORCID,Laguta O.2ORCID,Neugebauer P.2ORCID,Šimėnas M.3ORCID,Banys J.3ORCID,Kamba S.1ORCID

Affiliation:

1. Institute of Physics, Czech Academy of Sciences 1 , Na Slovance 1999/2, 18200 Prague, Czech Republic

2. Brno University of Technology, Central European Institute of Technology 2 , Purkyňova 656/123, 61200 Brno, Czech Republic

3. Faculty of Physics, Vilnius University 3 , Sauletekio 3, LT-10257 Vilnius, Lithuania

Abstract

The pulse electron paramagnetic resonance (EPR) is widely used in different branches of material and life sciences, including promising applications in quantum information processing and quantum sensing. Here, we study the effect of the high polarizability of KTaO3 and SrTiO3 quantum paraelectrics on local electric and magnetic field components of microwaves (MW) at Fe3+ and Mn2+ paramagnetic ions. The measurements are performed with a commercial EPR spectrometer using dielectric and split-ring resonators. It is found that the power of MW pulses used in coherent spin manipulation at nanoseconds timescale decreases to milliwatts as compared to the tens–hundreds of watts usually used for spins in conventional materials. The amplification of MW fields is related to the very high dielectric permittivity (up to 25 000 in SrTiO3) of quantum paraelectrics at GHz frequencies and temperatures below 20 K. This creates the large induced polarization and, thus, huge displacement current and in turn the secondary MW magnetic field. Numerical simulations support the observation of the enhanced magnetic MW field in the high-permittivity sample. The low MW power for excitation of spin transitions in quantum paraelectrics eliminates the requirement of expensive high-power MW equipment. This approach also allows to globally control spin qubits in tandem with integrated devices based on conventional semiconductor MW circuits working at mW powers. It is suggested that quantum paraelectrics can also be used as substrates for deposition of nanoparticles or films of other materials, which would be manipulated by the low-power MW pulses.

Funder

Czech science foundation

Research Council of Lithuania

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference35 articles.

1. Quantum mechanical computers;Found. Phys.,1986

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3