AI-driven photonics: Unleashing the power of AI to disrupt the future of photonics

Author:

Mahmoud Mohamed G.123ORCID,Hares Amr S.4ORCID,Hameed Mohamed Farhat O.2435ORCID,El-Azab M. S.4,Obayya Salah S. A.136ORCID

Affiliation:

1. Center for Photonics and Smart Materials, Zewail City of Science, Technology, and Innovation 1 , 6 October Gardens, Giza 12578, Egypt

2. Nanotechnology and Nanoelectronics Engineering, Zewail City of Science, Technology, and Innovation 2 , 6 October Gardens, Giza 12578, Egypt

3. Academy of Scientific Research and Technology (ASRT) 4 , Cairo, Egypt

4. Mathematics and Engineering Physics Department, Mansoura University 3 , Mansoura, Egypt

5. Center for Nanotechnology, Zewail City of Science, Technology, and Innovation 5 , 6 October Gardens, Giza 12578, Egypt

6. Electronics and Communications Engineering Department, Mansoura University 6 , Mansoura, Egypt

Abstract

Recent advances in artificial intelligence (AI) and computing technologies are currently disrupting the modeling and design paradigms in photonics. In this work, we present our perspective on the utilization of current AI models for photonic device modeling and design. Initially, through the physics-informed neural networks (PINNs) framework, we embark on the task of modal analysis, offering a unique neural networks-based solver and utilizing it to predict propagating modes and their corresponding effective indices for slab waveguides. We compare our model’s predictions against theoretical benchmarks and a finite differences solver. Evidently, using 349 analysis points, the PINN approach had a relative percentage error of 0.69272% compared to the finite differences method, which had a percentage error of 1.28142% with respect to the analytical solution, indicating that the PINN approach was more accurate in conducting modal analysis. Our model’s continuity over the entire solution domain enhances its performance and flexibility while requiring no training data due to its guidance by Maxwell’s equations, setting it apart from most AI approaches. Our model design also flexibly enables simultaneous prediction of multiple modes over any specified intervals of effective indices. In addition, we present a novel reinforcement learning (RL)-based paradigm, employing an actor–critic model for inverse design. We utilize this paradigm to optimize the transmittance of a grating coupler by manipulating the device geometry. Comparing the obtained design to that obtained using the Particle Swarm Optimization (PSO) algorithm, our RL-based approach effectively produced a significant enhancement of 34% in 14 iterations only over the initial design compared to the PSO, which prematurely scored 27% enhancement in 30 iterations, proving that our model navigates the design space more efficiently, achieving a better design than PSO and resulting in a superior design. Based on these approaches, we discuss the future of AI in photonics in forward modeling and inverse design and the untapped potential in bringing these worlds together.

Funder

Academy of Scientific Research and Technology (ASRT), Egypt

Science and Technology Development Fund

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3