Exact solution of polaritonic systems with arbitrary light and matter frequency-dependent losses

Author:

Cortese Erika1ORCID,De Liberato Simone1ORCID

Affiliation:

1. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

Abstract

In this paper, we perform the exact diagonalization of a light–matter strongly coupled system taking into account arbitrary losses via both energy dissipation in the optically active material and photon escape out of the resonator. This allows us to naturally treat the cases of couplings with structured reservoirs, which can strongly impact the polaritonic response via frequency-dependent losses or discrete-to-continuum strong coupling. We discuss the emergent gauge freedom of the resulting theory and provide analytical expressions for all the gauge-invariant observables in both the Power–Zienau–Woolley and the Coulomb representations. In order to exemplify the results, the theory is finally specialized to two specific cases. In the first one, both light and matter resonances are characterized by Lorentzian linewidths, and in the second one, a fixed absorption band is also present. The analytical expressions derived in this paper can be used to predict, fit, and interpret results from polaritonic experiments with arbitrary values of the light–matter coupling and with losses of arbitrary intensity and spectral shape in both the light and matter channels. A Matlab code implementing our results is provided.

Funder

Royal Society

Leverhulme Trust

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Engineered planar plasmonic reflector for polaritonic mode confinement [Invited];Optical Materials Express;2023-09-28

2. A Planar Plasmonic Reflector for Polaritons;2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz);2023-09-17

3. Real-space nanophotonic field manipulation using non-perturbative light–matter coupling;Optica;2022-12-23

4. Advances in modeling plasmonic systems;The Journal of Chemical Physics;2022-11-21

5. Theory of magnon polaritons in quantum Ising materials;Physical Review A;2022-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3