Reducing the impact of adaptive optics lag on optical and quantum communications rates from rapidly moving sources

Author:

Chan Kai SumORCID,Chau H. F.ORCID

Abstract

Wavefront of light passing through the turbulent atmosphere gets distorted. This causes signal loss in free-space optical communication as the light beam spreads and wanders at the receiving end. Frequency and/or time division multiplexing adaptive optics (AO) techniques have been used to conjugate this kind of wavefront distortion. However, if the signal beam moves relative to the atmosphere, the AO system performance degrades due to high temporal anisoplanatism. Here, we solve this problem by adding a pioneering beacon that is spatially separated from the signal beam with time delay between spatially separated pulses. More importantly, our protocol works irrespective of the signal beam intensity and, hence, is also applicable to secret quantum communication. In particular, using semi-empirical atmospheric turbulence calculation, we show that for low earth orbit satellite-to-ground decoy state quantum key distribution with the satellite at zenith angle <30°, our method increases the key rate by at least 215% and 40% for satellite altitudes of 400 and 800 km, respectively. Finally, we propose a modification of the existing wavelength division multiplexing systems as an effective alternative solution to this problem.

Funder

Hong Kong Government

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3