Thermal annealing of superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition

Author:

González Díaz-Palacio Isabel12ORCID,Wenskat Marc1ORCID,Deyu Getnet Kacha1ORCID,Hillert Wolfgang1ORCID,Blick Robert H.2ORCID,Zierold Robert2ORCID

Affiliation:

1. Insitute of Experimental Physics, Universität Hamburg 1 , Hamburg, Germany

2. Institute for Nanostructure and Solid State Physics and Center for Hybrid Nanostructures, Universität Hamburg 2 , Hamburg, Germany

Abstract

Next-generation superconducting radio frequency (SRF) cavities, based on tailored thin films, would allow for more efficient and sustainable accelerators operating at higher accelerating gradients. In particular, superconductor–insulator–superconductor (SIS) multilayers are proposed as a potential alternative to bulk Nb. In this context, NbTiN stands out as a superconducting candidate. Here, we report our studies on NbTiN thin films grown by plasma-enhanced atomic layer deposition (PEALD) in a supercycle approach on AlN in situ deposited on planar silicon substrates. In detail, different ternary compound compositions and thicknesses have been investigated concerning the elemental composition, the superconducting properties, and the crystallinity of the deposited thin films. Two different post-deposition thermal treatments have been applied to Nb0.75Ti0.25N thin films of different thicknesses. Their effect on the film properties has been evaluated. It has been demonstrated that an optimized post-deposition thermal annealing procedure significantly improves the quality of our PEALD deposited Nb0.75Ti0.25N thin films, achieving the highest superconducting critical temperature (Tc) of 15.9 K obtained for films deposited by atomic layer deposition (ALD) so far and a lower critical field (Hc1) of 213 mT, which overpasses the bulk Nb intrinsic limit of 200 mT. Our studies are a promising first stepping stone on the path toward tailored thin films based SRF cavities.

Funder

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3