Steady flow of power-law fluids past a slotted circular cylinder at low Reynolds number

Author:

Sharma B.1ORCID,Verma G.1ORCID,Barman R. N.1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India

Abstract

Steady laminar flow past a slotted circular cylinder was investigated for non-Newtonian power-law fluids at the low Reynolds number (Re) range ([Formula: see text]). Flow simulation was carried out for shear-thinning fluids with their power-law indices (n) varying from 0.2 to 1 (n = 0.2, 0.4, 0.6, 0.8, and 1). The normal (case A) and the slotted (case B) circular cylindrical geometries were considered, where the slit was placed between the front and the base pressure stagnation points. A finite volume method was used to calculate the flow field. The flow characteristics, such as flow separation angles, wake size, coefficients of pressure ( Cp), and drag ( CD), were studied for different Re and n values. For all n values, the slotted cylinder effectively delayed the flow separation. It showed much better pressure recovery than the normal cylinder due to the interaction between the self-bleed from the slit exit to the cylinder wake. The vorticity of this bleed influenced the wake's vorticity, and an increase of 3%–26.4% in higher maximum surface vorticity was reported for the slotted cylinder. An increase of 0.7%–6.5% in the bubble length was observed for the normal cylinder due to early flow separation. An enhanced pressure recovery across the slotted cylinder resulted in a significant drop in the pressure drag with 0.2%–4.56% reduction in the overall drag coefficient.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3