Machine learning-enhanced detection of minor radiation-induced defects in semiconductor materials using Raman spectroscopy

Author:

Chia Jia Yi1ORCID,Thamrongsiripak Nuatawan2ORCID,Thongphanit Sornwit2ORCID,Nuntawong Noppadon1ORCID

Affiliation:

1. National Electronics and Computer Technology, National Science and Technology Development Agency 1 , Pathum Thani 12120, Thailand

2. Development and Service Section, Irradiation Center, Thailand Institute of Nuclear Technology (Public Organization) 2 , Nakhon Nayok 26120, Thailand

Abstract

Radiation damage in semiconductor materials is a crucial concern for electronic applications, especially in the fields of space, military, nuclear, and medical electronics. With the advancements in semiconductor fabrication techniques and the trend of miniaturization, the quality of semiconductor materials and their susceptibility to radiation-induced defects have become more important than ever. In this context, machine learning (ML) algorithms have emerged as a promising tool to study minor radiation-induced defects in semiconductor materials. In this study, we propose a sensitive non-destructive technique for investigating radiation-induced defects using multivariate statistical analyses combined with Raman spectroscopy. Raman spectroscopy is a contactless and non-destructive method widely used to characterize semiconductor materials and their defects. The multivariate statistical methods applied in analyzing the Raman spectra provide high sensitivity in detecting minor radiation-induced defects. The proposed technique was demonstrated by categorizing 100–500 kGy irradiated GaAs wafers into samples with low and high irradiation levels using linear discrimination analysis ML algorithms. Despite the high similarity in the obtained Raman spectra, the ML algorithms correctly predicted the blind testing samples, highlighting the effectiveness of ML in defect study. This study provides a promising approach for detecting minor radiation-induced defects in semiconductor materials and can be extended to other semiconductor materials and devices.

Funder

Thailand's Program Management Unit for Competitiveness

National Electronics and Computer Technology Center

Thailand Institute of Nuclear Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3