Affiliation:
1. School of Chemistry, University of Hyderabad , Hyderabad 500 046, India
Abstract
The N–H photodissociation dynamics of the pyridinyl radical upon continuous excitation to the optically bright, first excited ππ* electronic state by an ultra-violet (UV) laser pulse has been investigated within the mathematical framework of optimal control theory. The genetic algorithm (GA) is employed as the optimization protocol. We considered a three-state and three-mode model Hamiltonian, which includes the reaction coordinate, R (a1 symmetry); the coupling coordinates (namely, out-of-plane bending coordinate of the hydrogen atom of azine group), Θ (b1 symmetry); and the wagging mode, Q9 (a2 symmetry). The three electronic states are the ground, ππ*, and πσ* states. The πσ* state crosses both the ground state and the ππ* state, and it is a repulsive state on which N–H dissociation occurs upon photoexcitation. Different vibrational wave functions along the coupling coordinates, Θ and Q9, of the ground electronic state are used as the initial condition for solving the time-dependent Schrödinger equation. The optimal UV laser pulse is designed by applying the GA, which maximizes the dissociation yield. We obtained over 95% dissociation yield through the πσ* asymptote using the optimal pulse of a time duration of ∼30 000 a.u. (∼725.66 fs).
Funder
Human Resource Development Centre, Council of Scientific and Industrial Research
Science and Engineering Research Board