Hybrid programming-model strategies for GPU offloading of electronic structure calculation kernels

Author:

Fattebert Jean-Luc1ORCID,Negre Christian F. A.2ORCID,Finkelstein Joshua2ORCID,Mohd-Yusof Jamaludin3ORCID,Osei-Kuffuor Daniel4ORCID,Wall Michael E.3ORCID,Zhang Yu2ORCID,Bock Nicolas5ORCID,Mniszewski Susan M.3ORCID

Affiliation:

1. Computational Sciences and Engineering Division, Oak Ridge National Laboratory 1 , Oak Ridge, Tennessee 37831, USA

2. Theoretical Division, Los Alamos National Laboratory 2 , Los Alamos, New Mexico 87545, USA

3. Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory 3 , Los Alamos, New Mexico 87545, USA

4. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory 4 , Livermore, California 94550, USA

5. Canonical USA Inc. 5 , Eatontown, New Jersey 07724, USA

Abstract

To address the challenge of performance portability and facilitate the implementation of electronic structure solvers, we developed the basic matrix library (BML) and Parallel, Rapid O(N), and Graph-based Recursive Electronic Structure Solver (PROGRESS) library. The BML implements linear algebra operations necessary for electronic structure kernels using a unified user interface for various matrix formats (dense and sparse) and architectures (CPUs and GPUs). Focusing on density functional theory and tight-binding models, PROGRESS implements several solvers for computing the single-particle density matrix and relies on BML. In this paper, we describe the general strategies used for these implementations on various computer architectures, using OpenMP target functionalities on GPUs, in conjunction with third-party libraries to handle performance critical numerical kernels. We demonstrate the portability of this approach and its performance in benchmark problems.

Funder

Office of Science

Publisher

AIP Publishing

Reference69 articles.

1. Heterogeneous programming for the homogeneous majority,2022

2. Pre-exascale accelerated application development: The ORNL Summit experience;IBM J. Res. Dev.,2020

3. Frontier: Exploring exascale,2023

4. Basic linear algebra subprograms for Fortran usage;ACM Trans. Math. Software,1979

5. An extended set of Fortran basic linear algebra subprograms;ACM Trans. Math. Software,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3