On Monami modes and scales of a flexible vegetation array in a laminar boundary layer

Author:

Ni JinyuanORCID,Ji ChunningORCID,Xu DongORCID,Zhang XingORCID,Liang DongfangORCID

Abstract

Flexible aquatic vegetation exists widely in nature and serves multiple hydro-environmental functions mainly through fluid–structure interactions. The waving motion of vegetation arrays, known as Monami, is predominantly governed by Kelvin–Helmholtz (KH) instability, and its characteristic scales, such as wave height and wavelength, are still being explored. In this paper, the interactions between a large array of flexible vegetations and a laminar boundary-layer flow are investigated using direct numerical simulation. The parameters used are the Reynolds number Re = 400, mass ratio β = 1.0, bending rigidity γ = 0.04–0.22, and gap distance d = 0.4–1.6. A low frequency in Monami is found to be related to the fluctuation frequency of the onset position of the KH instability, which leads to the identification of four different Monami modes: regular Monami, quasi-regular Monami A, quasi-regular Monami B, and irregular Monami. The influences of the bending rigidity and gap distance on the Monami modes, KH instability onset position, and Monami characteristic scales are discussed. It was found that the causes of spatial and temporal variations in the characteristic scales of Monami vary depending on the mode. In the regular Monami mode, these variations result from the evolution of the KH vortex. In the quasi-regular Monami A mode, they are strongly affected by the shifting of the onset position of the KH instability. In the other two modes, these variations are caused by a combination of the fluctuation in the KH instability onset position and the complex interaction between vortices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3