Laser propulsion of microsphere in water using tapered fiber-induced shock wave

Author:

Ge Yang1ORCID,Zhou Gaoqian23ORCID,Yang Xulong23ORCID,Chen Ying1ORCID,Tang Xianqi1ORCID,Li Hangyang23ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University 1 , Harbin 150001, China

2. Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University 2 , Harbin 150001, China

3. Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University 3 , Harbin 150001, China

Abstract

The driving experiment of SiO2 microspheres in a water environment was carried out by using tapered fiber microstructures to transmit short pulse lasers. The fiber microstructure can generate plasma and spherical shock waves to drive SiO2 microspheres. Through theoretical simulation, the propagation characteristics of shock waves and the dynamic characteristics of microspheres were studied. In the experiment, a high-speed COMS camera was used to capture the images of shock wave diffusion and microsphere motion. A linear relationship between the driving behavior of microspheres and the laser energy distribution is observed. The driving behavior of microspheres is attributed to the resultant force caused by spherical shock wave diffusion. We find that the initial driving velocity approximately follows the inverse quadratic function of the radius ratio of the spherical wave, which is consistent with the experimental results. Compared with the traditional technology, this method has the advantages of directional stability, good security, anti-interference, and so on. It can be used for stable directional driving of micron objects in a water environment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3