Terahertz emission from a bounded plasma

Author:

Verma Deepa1ORCID,Michau Armelle1ORCID,Vasanelli Angela2,Sirtori Carlo2ORCID,Hassouni Khaled1ORCID

Affiliation:

1. Laboratoire des Sciences des Procédés et des Matériaux (LSPM), CNRS-UPR3407, Université Paris 13 1 , 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France

2. Laboratoire de Physique de l'Ecole Normale Supérieure ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité 2 , 24 rue Lhomond, Paris 75005, France

Abstract

The dynamics of electrons submitted to voltage pulses in a thin semiconductor layer is investigated using a kinetic approach based on the solution of the electron Boltzmann equation using particle-in-cell/Monte Carlo collision simulations. The results showed that due to the fairly high plasma density, oscillations emerge from a highly nonlinear interaction between the space-charge field and the electrons. The voltage pulse excites electron waves with dynamics and phase-space trajectories that depend on the doping level. High-amplitude oscillations take place during the relaxation phase and are subsequently damped over time-scales in the range 100–400 fs and decrease with the doping level. The power spectra of these oscillations show a high-energy band and a low-energy peak that were attributed to bounded plasma resonances and to a sheath effect. The high-energy THz domain reduces to sharp and well-defined peaks for the high doping case. The radiative power that would be emitted by the thin semiconductor layer strongly depends on the competition between damping and radiative decay in the electron dynamics. Simulations showed that higher doping level favor enhanced magnitude and much slower damping for the high-frequency current, which would strongly enhance the emitted level of THz radiation.

Funder

Laboratoire d'Excellence SEAM

Institut Universitaire de France

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Reference37 articles.

1. Cutting-edge terahertz technology

2. Terahertz technology

3. The 2017 terahertz science and technology roadmap

4. Terahertz communication: The opportunities of wireless technology beyond,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3