A controlled study of the effect of deviations from symmetry of the potential energy surface (PES) on the accuracy of the vibrational spectrum computed with collocation

Author:

Manzhos Sergei1ORCID,Ihara Manabu1

Affiliation:

1. School of Materials and Chemical Technology, Tokyo Institute of Technology , Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan

Abstract

Symmetry, in particular permutational symmetry, of a potential energy surface (PES) is a useful property in quantum chemical calculations. It facilitates, in particular, state labelling and identification of degenerate states. In many practically important applications, however, these issues are unimportant. The imposition of exact symmetry and the perception that it is necessary create additional methodological requirements narrowing or complicating algorithmic choices that are thereby biased against methods and codes that by default do not incorporate symmetry, including most off-the-shelf machine learning methods that cannot be directly used if exact symmetry is demanded. By introducing symmetric and unsymmetric errors into the PES of H2CO in a controlled way and computing the vibrational spectrum with collocation using symmetric and nonsymmetric collocation point sets, we show that when the deviations from an ideal PES are random, imposition of exact symmetry does not bring any practical advantages. Moreover, a calculation ignoring symmetry may be more accurate. We also compare machine-learned PESs with and without symmetrization and demonstrate that there is no advantage of imposing exact symmetry for the accuracy of the vibrational spectrum.

Funder

JST-Mirai Program

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3