Understanding the origins of the basic equations of statistical fibrillatory dynamics

Author:

Jenkins Evan V.12ORCID,Dharmaprani Dhani12ORCID,Schopp Madeline2,Quah Jing Xian13,Tiver Kathryn3,Mitchell Lewis4ORCID,Pope Kenneth2,Ganesan Anand N.13ORCID

Affiliation:

1. College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia

2. College of Science and Engineering, Flinders University, Adelaide 5042, Australia

3. Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide 5042, Australia

4. School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia

Abstract

The mechanisms governing cardiac fibrillation remain unclear; however, it most likely represents a form of spatiotemporal chaos with conservative system dynamics. Renewal theory has recently been suggested as a statistical formulation with governing equations to quantify the formation and destruction of wavelets and rotors in fibrillatory dynamics. In this perspective Review, we aim to explain the origin of the renewal theory paradigm in spatiotemporal chaos. The ergodic nature of pattern formation in spatiotemporal chaos is demonstrated through the use of three chaotic systems: two classical systems and a simulation of cardiac fibrillation. The logistic map and the baker's transformation are used to demonstrate how the apparently random appearance of patterns in classical chaotic systems has macroscopic parameters that are predictable in a statistical sense. We demonstrate that the renewal theory approach developed for cardiac fibrillation statistically predicts pattern formation in these classical chaotic systems. Renewal theory provides governing equations to describe the apparently random formation and destruction of wavelets and rotors in atrial fibrillation (AF) and ventricular fibrillation (VF). This statistical framework for fibrillatory dynamics provides a holistic understanding of observed rotor and wavelet dynamics and is of conceptual significance in informing the clinical and mechanistic research of the rotor and multiple-wavelet mechanisms of AF and VF.

Funder

National Heart Foundation of Australia

National Health and Medical Research Council

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3