Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators

Author:

Kossaczká Tatiana1ORCID,Jagtap Ameya D.2ORCID,Ehrhardt Matthias1ORCID

Affiliation:

1. Applied and Computational Mathematics, Bergische Universität Wuppertal 1 , Gaußstrasse 20, Wuppertal 42119, Germany

2. Division of Applied Mathematics, Brown University 2 , 182 George Street, Providence, Rhode Island 02912, USA

Abstract

In this work, we enhance the fifth-order Weighted Essentially Non-Oscillatory (WENO) shock-capturing scheme by integrating deep learning techniques. We improve the established WENO algorithm by training a compact neural network to dynamically adjust the smoothness indicators within the WENO scheme. This modification boosts the accuracy of the numerical results, particularly in proximity to abrupt shocks. Notably, our approach eliminates the need for additional post-processing steps, distinguishing it from previous deep learning-based methods. We substantiate the superiority of our new approach through the examination of multiple examples from the literature concerning the two-dimensional Euler equations of gas dynamics. Through a thorough investigation of these test problems, encompassing various shocks and rarefaction waves, our novel technique consistently outperforms the traditional fifth-order WENO scheme. This superiority is especially evident in cases where numerical solutions exhibit excessive diffusion or overshoot around shocks.

Publisher

AIP Publishing

Reference56 articles.

1. Monotone difference approximations for scalar conservation laws;Math. Comp.,1980

2. High resolution schemes for hyperbolic conservation laws;J. Comput. Phys.,1983

3. Uniformly high order accurate essentially non-oscillatory schemes, III;Hussaini,1987

4. Efficient implementation of weighted ENO schemes;J. Comput. Phys.,1996

5. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws;Quarteroni,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3