Affiliation:
1. Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
Abstract
We show that the quantum dimer state on the Kagome lattice, which was recently realized with high fidelity in a Rydberg quantum simulator [G. Semeghini et al., Science 374, 6572 (2021)], offers a sufficient resource for universal measurement-based quantum computations. In particular, we provide an efficient encoding of logical qubits in this state and give explicit measurement sequences that implement a universal set of gates on these qubits. Since the building blocks of the proposed measurements have already been experimentally implemented, our work highlights one possible path toward promoting Rydberg simulators to universal quantum computers relying on the measurement-based model of quantum computation with currently existing technology.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献