Molecular hydrodynamic theory of the velocity autocorrelation function

Author:

Seyler S. L.1ORCID,Seyler C. E.2ORCID

Affiliation:

1. School of Molecular Sciences, Arizona State University 1 , Tempe, Arizona 85287, USA

2. Laboratory of Plasma Studies, Cornell University 2 , Ithaca, New York 14853, USA

Abstract

The velocity autocorrelation function (VACF) encapsulates extensive information about a fluid’s molecular-structural and hydrodynamic properties. We address the following fundamental question: How well can a purely hydrodynamic description recover the molecular features of a fluid as exhibited by the VACF? To this end, we formulate a bona fide hydrodynamic theory of the tagged-particle VACF for simple fluids. Our approach is distinguished from previous efforts in two key ways: collective hydrodynamic modes and tagged-particle self-motion are modeled by linear hydrodynamic equations; the fluid’s spatial velocity power spectrum is identified as a necessary initial condition for the momentum current correlation. This formulation leads to a natural physical interpretation of the VACF as a superposition of products of quasinormal hydrodynamic modes weighted commensurately with the spatial velocity power spectrum, the latter of which appears to physically bridge continuum hydrodynamical behavior and discrete-particle kinetics. The methodology yields VACF calculations quantitatively on par with existing approaches for liquid noble gases and alkali metals. Furthermore, we obtain a new, hydrodynamic form of the self-intermediate scattering function whose description has been extended to low densities where the Schmidt number is of order unity; various calculations are performed for gaseous and supercritical argon to support the general validity of the theory. Excellent quantitative agreement is obtained with recent MD calculations for a dense supercritical Lennard-Jones fluid.

Funder

National Science Foundation

National Nuclear Security Administration

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3