A decomposition-guided mechanism for nonstationary time series forecasting

Author:

Wang Hao1ORCID,Al Tarawneh Lubna1,Cheng Changqing1ORCID,Jin Yu1ORCID

Affiliation:

1. Department of Systems Science and Industrial Engineering, State University of New York at Binghamton , Binghamton, New York 13902, USA

Abstract

Time series forecasting has been playing an important role in decision making, control, and monitoring across various fields. Specifically, the forecasting of nonstationarity time series remains a challenging problem where traditional time series modeling may not fully capture temporal dynamics. Recent studies of applying machine learning (ML) or more advanced hybrid models combining the ML and decomposition methods have shown their flexible nonstationary and nonlinear modeling capability. However, the end-effect problem introduced by the decomposition methods still introduces significant forecasting errors because of the unknown realm beyond the time series boundary. Therefore, a novel method applying a decomposition-guided mechanism is proposed in this work to eliminate the end effect problem while inheriting the knowledge learned from the decomposition state space to improve the prediction accuracy of such hybrid models in time series forecasting. Additionally, a domain adaptation model is integrated with the proposed mechanism to transfer knowledge from the source domain to the target domain regarding the decomposition state space. In this work, the intrinsic time-scale decomposition and Gaussian process are considered as examples of decomposition and ML methods to demonstrate the proposed mechanism’s effectiveness. Both simulation experiments and real-world case studies are conducted to show that a hybrid model with the proposed mechanism outperforms the conventional time series forecasting model, pure ML, and the original hybrid model in terms of prediction accuracy.

Funder

Research Foundation for the State University of New York

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3