Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries

Author:

Xie Zhi-Yu12,Xing Xuanxuan1,Yu Lianzheng1,Chang Yu-Xin1,Yin Ya-Xia2ORCID,Xu Li3,Yan Mengmeng1,Xu Sailong1ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China

3. Beijing Institute of Smart Energy, Beijing 102209, China

Abstract

Transition-metal layered oxides (such as P2-Na2/3Ni1/3Mn2/3O2) are suggested as one type of the most potential cathode candidates for sodium ion batteries (SIBs) owing to their high capacity and low cost; however, they suffer from the structural damage and sluggish Na+ kinetics resulting from the undesirable phase transformation of P2−O2 and the Na+/vacancy ordering, respectively. Herein, a Mg/Ti co-doped P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 layered oxide is demonstrated as a high-efficiency cathode material for SIBs. The cathode delivers a high reversible capacity of 135.5 mAh g−1, good cycling stability (82.7 mAh g−1 upon 100 cycles at 0.1C), and an attractive energy density of 479.4 Wh Kg−1. Furthermore, the phase transition from the undesirable P2−O2 to the reversible P2−OP4 demonstrated by in situ XRD and the partially suppressed Na+/vacancy ordering as well as the improved electronic and ionic conductivities all give rise to the enhancement. These results show the important role of cationic co-doping in designing and preparing high-efficiency layered oxide cathode materials for SIBs.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Basic Science Center Project of National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3