Affiliation:
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology , Kunming 650093, China
Abstract
Selective activation of the C–H bond of aromatic hydrocarbons is significant in synthetic chemistry. However, achieving oriented C–H activation remains challenging due to the poor selectivity of aromatic C–H bonds. Herein, we successfully constructed alternately arranged Au–C4 and Au–O4 organometallic coordination networks through selective aromatic C–H bond activation on Au(111) substrate. The stepwise reaction process of the 5, 12-dibromopyrene 3,4,9, 10-tetracarboxylic dianhydride precursor is monitored by high-resolution scanning tunneling microscopy. Our results show that the gold atoms in C–Au–C organometallic chains play a crucial role in promoting the selective ortho C–H bonds activation and forming Au–C4 coordination structure, which is further demonstrated by a comparative experiment of PTCDA precursor on Au(111). Furthermore, our experiment of 2Br-PTCDA precursor on Cu(111) substrate confirms that copper atoms in C–Cu–C organometallic chains can also assist the formation of Cu–C4 coordination structure. Our results reveal the vital effect of organometallic coordination on selective C–H bond activation of reactants, which holds promising implications for controllable on-surface synthesis.
Funder
National Natural Science Foundation of China
Yunnan Fundamental Research Projects
Major Basic Research Project of Science and Technology of Yunnan
Yunnan Innovation Team of Graphene Mechanism Research and Application Industrialization
Graphene Application and Engineering Research Center of Education Department of Yunnan Province
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献