Design approach of thrust-matched rotor for basin model tests of floating straight-bladed vertical axis wind turbines

Author:

Cao Q.12ORCID,Chen Y.12,Zhang K.12ORCID,Zhang X.1ORCID,Cheng Z.34,Wen B.34ORCID

Affiliation:

1. China Ship Scientific Research Center 1 , Wuxi 214000, China

2. Taihu Laboratory of Deepsea Technology Science 2 , Wuxi 214000, China

3. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University 3 , Shanghai 200240, China

4. SJTU-Sanya Yazhou Bay Institute of Deep Sea Science and Technology 4 , Sanya 572024, China

Abstract

Rotor redesign approaches have been widely proposed to solve the thrust mismatch issue caused by scaling effects for basin model tests of horizontal axis floating wind turbines (FWTs). However, limited basin model tests utilized the thrust-matched rotor (TMR) to accurately evaluate the aerodynamic loads applying to the vertical axis FWTs. This paper described the detailed design approach of the TMR of floating straight-bladed vertical axis wind turbines (VAWTs) with a rated power of 5.3 MW. First, the AG455 airfoil was selected to replace the NACA0018 airfoil. AG455 airfoil can show a larger lift coefficient and a smaller drag coefficient at low Reynolds number. On this basis, the load distribution match algorithm was used to assign the blade pitch angle and chord length at each section of the blade. This method takes the spanwise load and load change rate of model-scaled blade and full-scaled blade as the constraint conditions. By adopting this method, the rotor thrust can be tailored to match the prototype values across a wide range of tip speed ratios. This design approach proves advantageous in assessing the aerodynamic performance of VAWTs under varying inflow wind speeds and unsteady wind conditions. The redesigned TMR model under low Reynolds number can meet Froude similarity criterion, which is helpful to improve the accuracy of vertical axis FWT model tests in the wave basin.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3