Berry curvature induced spontaneous and topological-like Hall effect in magnetic Weyl semimetallic Nd2Ir2O7 (111) thin films

Author:

Ghosh Mithun1ORCID,Babu P. D.2ORCID,Kumar P. S. Anil1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Science 1 , Bangalore 560012, Karnataka, India

2. UGC-DAE Consortium for Scientific Research 2 , 246-C, CFB, BARC Campus, Mumbai 400085, India

Abstract

We report a study of longitudinal resistivity, anisotropic magnetoresistance (MR), and Hall effect on epitaxial Nd2Ir2O7 (111) thin films grown by the solid phase epitaxy technique, in which spin–orbit coupling, electronic correlation, magnetic frustration, and f-d exchange interaction are present. Temperature-dependent longitudinal resistivity (ρxx) data indicate semimetallic charge transport in the low-temperature region. Field-cooled longitudinal resistivity measurements detect negligible domain-wall conductance compared to the polycrystal or single-crystal samples. Angle-dependent MR measurement shows that the magnetic structure of Ir4+ 5d moments can be finely tuned by applying a magnetic field along different crystallographic directions. MR measurements show a field-induced modification of the Nd3+ 4f spin structure from all-in-all-out/all-out-all-in (AIAO/AOAI) (4-in-0-out) to 1-in-3-out for the applied field (H) along the [111] direction, resulting in field-induced plastic deformation of the Ir4+ domain distribution. In contrast, the application of field (H) along the [001] and [011] directions could not modify any domain distribution. A large spontaneous Hall effect (SHE) signal has been observed on Nd2Ir2O7 (111) thin film with AIAO/AOAI antiferromagnetic ordering for the application of field (H) along [001], [1̄1̄0], and [111] directions. The appearance of a large spontaneous Hall signal for the applied field along [001] and [1̄1̄0] directions rules out domain switching as the origin of the Hall effect and confirms the presence of the Weyl semimetallic phase in Nd2Ir2O7 (111) thin films. In addition to SHE, a large topological-like Hall signal is also observed, possibly due to the presence of multiple Weyl nodes in the electronic band structure.

Funder

Department of Science and Technology, Government of India

Ministry of Education, Government of Education

IRPHA Grant DST

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3