Study on the decomposition mechanism and insulation stability of HFO-1336mzz(E)/air mixtures as a new environment-friendly insulation medium under AC voltage

Author:

Tang Nian1,Nie Jia2ORCID,Liu Jie2ORCID,Sun Dongwei1,Li Li1,Liu Zhenguo1ORCID,Zhang Manjun1,Wang Feng2,Qu Zhe2ORCID,Hu Yuzhu2ORCID

Affiliation:

1. Key Laboratory of Sulfur Hexafluoride of China Southern Power Grid Co., Ltd. (Electric Power Research Institute of Guangdong Power Grid Co., Ltd.) 1 , Guangzhou 510080, People’s Republic of China

2. College of Electrical and Information Engineering, Hunan University 2 , Changsha 410082, People’s Republic of China

Abstract

As one of hydrofluoroolefins (HFOs), HFO-1336mzz(E) is regarded as a promising eco-friendly alternative insulation medium to Sulfur Hexafluoride (SF6) owing to its excellent environmental effect and insulation property. To study the decomposition mechanism and insulation stability, the decomposition experiment of a 0.5 MPa mixture containing 8% HFO-1336mzz(E) and 92% air was performed under AC breakdown conditions. The results indicated that the main decomposition products were CF4, C2F6, C3F8, CF3H, CF3C=CH, CF3CH=CHF(E), CF3CHF2, CF3CH=CH2, CF2=CFH, CF2=CH2, CH≡CH, C4H2F6O, CF3O3CF3, etc. Among them, the generation of C3F8, CH≡CH, and C4H2F6O was relatively more difficult than others. Thus, these three compounds can be considered typical decomposition products. New elements, namely C, F, and N, appeared on the electrode surface after breakdowns compared to the state before breakdowns. It can be concluded that some complex chemical reactions were triggered between the electrode material and gas mixture under the action of breakdown discharge. Additionally, the breakdown voltage of the HFO-1336mzz(E)/air mixture almost remained unchanged, showing that the gas mixture still exhibited an excellent insulation stability after multiple breakdowns.

Funder

The Science and Technology Project of China Southern Power Grid

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3