Affiliation:
1. Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, People's Republic of China
Abstract
The electron thermal conduction strongly affects the hot-spot formation and the hydrodynamic instability growth in inertial confinement fusion implosions. A harmonic-mean flux-limited conductivity model has been widely used in implosion simulations. In this paper, using the high foot implosion N140520 as an example, we have performed a series of one-dimensional (1D) no-alpha simulations to quantify the impact of different conductivity models including the Spitzer–Harm model, the Lee–More model, and the recently proposed coupled Gericke-Murillo-Schlanges model [Ma et al., Phys. Rev. Lett. 122, 015001 (2019)] with the flux limiter fe ranging from 0.03 to 0.15 on the performance of cryogenic implosions. It is shown that varying fe has a bigger impact on the performance than changing conductivity models. Therefore, we have only performed two-dimensional (2D) no-alpha simulations using the Lee–More model with different flux limiters [Formula: see text] to quantify the effect of the electron thermal conduction on the performance, with single-mode velocity perturbations with different mode numbers L seeded on the inner shell surface near the peak implosion velocity. We find that in both the 1D implosions and the 2D implosions with the same L, increasing fe leads to more hot-spot mass and lower hot-spot-averaged ion temperature, resulting in approximately constant hot-spot internal energy. In addition, the no-alpha yield [Formula: see text] is dominated by the neutron-averaged ion temperature Tn in these two cases. Increasing [Formula: see text] from 0.0368 to 0.184 reduces Tn by ∼15% in 1D and by ∼20% for the 2D implosions with the same L, both leading to a ∼20% reduction in [Formula: see text].
Funder
National Key Research and Development Program of China