Dimensional crossover of microscopic magnetic metasurfaces for magnetic field amplification

Author:

Lejeune N.1ORCID,Fourneau E.1ORCID,Barrera A.2ORCID,Morris O.3ORCID,Leonard O.3ORCID,Arregi J. A.4ORCID,Navau C.5ORCID,Uhlíř V.46ORCID,Bending S.3ORCID,Palau A.2ORCID,Silhanek A. V.1ORCID

Affiliation:

1. Experimental Physics of Nanostructured Materials, Department of Physics, Université de Liège 1 , Sart Tilman, B-4000 Liège, Belgium

2. Insititut de Ciència de Materials de Barcelona, ICMAB-CSIC 2 , Campus de la UAB, 08193 Bellaterra, Spain

3. Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath 3 , Bath BA2 7AY, United Kingdom

4. CEITEC BUT, Brno University of Technology 4 , Purkyñova 123, 612 00 Brno, Czech Republic

5. Grup d’Electromagnetisme, Departament de Fisica, Universitat Autonoma de Barcelona 5 , 08193, Bellaterra, Barcelona, Spain

6. Institute of Physical Engineering, Brno University of Technology 6 , Technická 2, 616 69 Brno, Czechia

Abstract

Transformation optics applied to low frequency magnetic systems have been recently implemented to design magnetic field concentrators and cloaks with superior performance. Although this achievement has been amply demonstrated theoretically and experimentally in bulk 3D macrostructures, the performance of these devices at low dimensions remains an open question. In this work, we numerically investigate the non-monotonic evolution of the gain of a magnetic metamaterial field concentrator as the axial dimension is progressively shrunk. In particular, we show that in planar structures, the role played by the diamagnetic components becomes negligible, whereas the paramagnetic elements increase their magnetic field channeling efficiency. This is further demonstrated experimentally by tracking the gain of superconductor-ferromagnet concentrators through the superconducting transition. Interestingly, for thicknesses where the diamagnetic petals play an important role in the concentration gain, they also help to reduce the stray field of the concentrator, thus limiting the perturbation of the external field (invisibility). Our findings establish a roadmap and set clear geometrical limits for designing low dimensional magnetic field concentrators.

Funder

Fonds De La Recherche Scientifique - FNRS

CHIST-ERA

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

European Cooperation in Science and Technology

Technology Agency of the Czech Republic

Engineering and Physical Sciences Research Council

Fonds pour La Formation à la Recherche Dans l’Industrie et dans l’Agriculture

Ministry of Education, Youth, and Sports of the Czech Republic

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3