Effects of swirl number and bluff body on swirling flow dynamics

Author:

Gao Yupeng1ORCID,Zhang Xiaoguang2,Han Wang13ORCID,Li Jingxuan13ORCID,Yang Lijun13ORCID

Affiliation:

1. School of Astronautics, Beihang University 1 , Beijing 100191, China

2. Science and Technology on Liquid Rocket Engine Laboratory, Xi’an Aerospace Propulsion Institute 2 , Xi’an 710100, China

3. Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University 3 , Ningbo 315100, China

Abstract

Bluff-body swirling flows have been widely employed in gas-turbine combustors to achieve flame stabilization. Meanwhile, considerable efforts have been made to understand swirling flow dynamics, the effects of swirl number and bluff body on flow structure and dynamics are still not well understood. To this end, a series of direct numerical simulations of isothermal swirling flows have been conducted in this work in order to investigate the impact of swirl numbers and bluff-body diameters on the flow structure, Reynolds stresses, and turbulent kinetic energy (TKE) transport. It is found that a change in the swirl number can affect the inner recirculation zone (IRZ) and hence momentum transport. Specifically, as the swirl number increases, the vortex core formed at downstream locations can merge with the IRZ. Moreover, including the bluff body not only contributes to the formation of the IRZ but also serves as a disturbance source for the flow, which is favorable for the formation of large-scale vortex structures. Then, the impact of swirl number and bluff body on Reynolds shear stresses and anisotropy invariants is investigated to identify the locations of the inter shear layer (ISL), the outer shear layer (OSL), and the main swirling zone (MSZ). The results show that as the swirl number increases, both the ISL and MSZ shift to the wall, indicating a large IRZ. Furthermore, the analysis of TKE indicates that for cases with a bluff body, TKE mainly occurs in the ISL and OSL, featuring a dual peak distribution. However, for cases without a bluff body, the distribution of TKE is primarily concentrated in the ISL. These results suggest that both increasing the swirl number and/or including the bluff body could help with TKE transport, which can lead to a wide range of TKE distribution.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3