In-based coordination polymer-derived carbon nanoribbons with abundant CoP nanoparticles in carbon nanotubes for water oxidation

Author:

Wang Xiaofang1ORCID,Guo Yuanyuan2ORCID,Shen Yanqiong3ORCID,Qian Jinjie2ORCID

Affiliation:

1. College of Optoelectronic Manufacturing, Zhejiang Industry and Trade Vocational College 1 , Wenzhou 325003, Zhejiang, People’s Republic of China

2. Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China 2

3. College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, Yunnan, People's Republic of China 3

Abstract

The sluggish oxygen evolution reaction (OER) in overall electrocatalytic water splitting poses a significant challenge in hydrogen production. A series of transition metal phosphides are emerging as promising electrocatalysts, effectively modulating the charge distribution of surrounding atoms for OER. In this study, a highly efficient OER electrocatalyst (CoP-CNR-CNT) was successfully synthesized through the pyrolysis and phosphatization of a Co-doped In-based coordination polymer, specifically InOF-25. This process resulted in evenly dispersed CoP nanoparticles encapsulated in coordination polymer-derived carbon nanoribbons. The synthesized CoP-CNR-CNT demonstrated a competitive OER activity with a smaller overpotential (η10) of 295.7 mV at 10 mA cm-2 and a satisfactory long-term stability compared to the state-of-the-art RuO2 (η10 = 353.7 mV). The high OER activity and stability can be attributed to the high conductivity of the carbon network, the abundance of CoP particles, and the intricate nanostructure of nanoribbons/nanotubes. This work provides valuable insights into the rational design and facile preparation of efficient non-precious metal-based OER electrocatalysts from inorganic–organic coordination polymers, with potential applications in various energy conversion and storage systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3