Droplet impact on hot substrates under a uniform electric field

Author:

Xu Haojie12ORCID,Wang Junfeng1ORCID,Yu Kai1,Li Bin1ORCID,Zhang Wei1,Zuo Lei1,Kim Hyoung-Bum2ORCID

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China

2. School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, South Korea

Abstract

Droplet impact on a hot substrate under an electric field is fundamental and crucial for electrospray cooling. However, the involved thermal–electric coupling impact electrohydrodynamic has not been well understood. In this study, the effects of an electric field on the droplet impact behavior in different thermal regimes and the subsequent dynamic mechanisms were experimentally investigated. The results showed that the vertical electric field would result in an upward liquid ejection in the film evaporation regime. In the nucleate boiling regime, the liquid pinch-off phenomenon was observed. In addition, the droplet evaporation rate was increased by approximately 23% with an electric field of 6 kV/cm. In the film boiling regime, both the residence time and bounce-off droplet height were significantly increased. The various impact phenomena were mainly explained by the competition between electrostatic and capillary pressures. The comprehensive effects of surface free charges and temperature variation on the droplet surface tension coefficient were discussed. Moreover, according to the thermal analysis, the heat transfer in the film boiling regime with an electric field was enhanced by approximately 137%. This work contributed to the development of the droplet impact dynamics under the coupling temperature and electric fields and demonstrated great promise for the electric field for thermal-fluid manipulation.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3