Noise and spike-time-dependent plasticity drive self-organized criticality in spiking neural network: Toward neuromorphic computing

Author:

Ikeda Narumitsu1ORCID,Akita Dai1ORCID,Takahashi Hirokazu1ORCID

Affiliation:

1. Graduate School of Information Science and Technology, The University of Tokyo , Tokyo 113-8656, Japan

Abstract

Self-organized criticality (SoC) may optimize information transmission, encoding, and storage in the brain. Therefore, the underlying mechanism of the SoC provides significant insight for large-scale neuromorphic computing. We hypothesized that noise and stochastic spiking plays an essential role in SoC development in spiking neural networks (SNNs). We demonstrated that under appropriate noise levels and spike-time-dependent plasticity (STDP) parameters, an SNN evolves a SoC-like state characterized by a power-law distribution of neuronal avalanche size in a self-organized manner. Consistent with the physiological findings, the development of SNN was characterized by a transition from a subcritical state to a supercritical state and then to a critical state. Excitatory STDP with an asymmetric time window dominated the early phase of development; however, it destabilized the network and transitioned to the supercritical state. Synchronized bursts in the supercritical state enable inhibitory STDP with a symmetric time window, induce the development of inhibitory synapses, and stabilize the network toward the critical state. This sequence of transitions was observed when the appropriate noise level and STDP parameters were set to the initial conditions. Our results suggest that noise or stochastic spiking plays an essential role in SoC development and self-optimizes SNN for computation. Such neural mechanisms of noise harnessing would offer insight into the development of energy-efficient neuromorphic computing.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

New Energy and Industrial Technology Development Organization

Moonshot Research and Development Program

Asahi Glass Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3