A flexible gyro-fluid system of equations

Author:

Staebler G. M.12ORCID,Belli E. A.2ORCID,Candy J.2ORCID

Affiliation:

1. Oak Ridge National Laboratory 1 , Oak Ridge, Tennessee 37831, USA

2. General Atomics 2 , San Diego, California 92121, USA

Abstract

Gyro-fluid equations are velocity space moments of the gyrokinetic equations. Special gyro-Landau-fluid closures have been developed that include the damping due to kinetic resonances by fitting to the collisionless local plasma response functions. This damping allows for accurate linear eigenmodes to be computed with a relatively low number of velocity space moments compared to the number of velocity quadrature points in gyrokinetic codes. However, none of the published gyro-Landau-fluid closure schemes considers the Onsager symmetries of the resulting quasi-linear fluxes as a constraint. Onsager symmetry guarantees that the matrix of diffusivities is positive definite, an important property for the numerical stability of a transport solver. A two parameter real closure for improving the accuracy of low resolution gyro-fluid equations, which preserves the Onsager symmetry and allows higher velocity space moments, is presented in this paper. The new linear gyro-fluid system (GFS) is used to extend the TGLF quasi-linear transport model so that it can compute the energy and momentum fluxes due to parallel magnetic fluctuations, completing the transport matrix. The GFS equations do not use a bounce average approximation. The GFS equations are fully electromagnetic with general flux surface magnetic geometry, pitch angle scattering for electron collisions, and subsonic equilibrium toroidal rotation. Using GFS eigenmodes in the quasi-linear TGLF model will be shown to yield a more accurate match to fluxes computed by CGYRO turbulence simulations. Prospects for future applications of a quasi-linear theory to new plasma transport regimes and magnetic confinement devices in addition to tokamaks are opened by the flexibility of the GFS eigensolver.

Funder

Fusion Energy Sciences

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Reference21 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3