Affiliation:
1. Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University 1 , Xiamen 361021, China
2. Section Luminescence Materials, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology 2 , Mekelweg 15, 2629JB Delft, The Netherlands
Abstract
Discovering energy storage materials with rationally controlled trapping and de-trapping of electrons and holes upon x-rays, UV-light, or mechanical force stimulation is challenging. Such materials enable promising applications in various fields, for instance in multimode anti-counterfeiting, x-ray imaging, and non-real-time force recording. In this work, photoluminescence spectroscopy, the refined chemical shift model, and thermoluminescence studies will be combined to establish the vacuum referred binding energy (VRBE) diagrams for the LiSc1−xLuxGeO4 family of compounds containing the energy level locations of Bi2+, Bi3+, and the lanthanides. The established VRBE diagrams are used to rationally develop Bi3+ and lanthanides doped LiSc1−xLuxGeO4 storage phosphors and to understand trapping and de-trapping processes of charge carriers with various physical excitation means. The thermoluminescence intensity of x-ray irradiated LiSc0.25Lu0.75GeO4:0.001Bi3+,0.001Eu3+ is about two times higher than that of the state-of-the-art x-ray storage phosphor BaFBr(I):Eu2+. Particularly, a force induced charge carrier storage phenomenon appears in Eu3+ co-doped LiSc1−xLuxGeO4. Proof-of-concept non-real-time force recording, anti-counterfeiting, and x-ray imaging applications will be demonstrated. This work not only deepens our understanding of the capturing and de-trapping processes of electrons and holes with various physical excitation sources, but can also trigger scientists to rationally discover new storage phosphors by exploiting the VRBEs of bismuth and lanthanide levels.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Fundamental Research Funds for Central Universities
Fundamental Research Funds of Huaqiao University
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献